Correction Révision semaine 5

Fonction linéaire

Ex.11 p.312

b. Oui,
$$a = 4$$
.

c. Oui,
$$a = 1.8$$
.

e. Oui,
$$a = \frac{2}{3}$$
. **f.** Non.

Ex.24 p.313

a.
$$f(3) = -3.5 \times 3 = -10.5$$
.

L'image de 3 est -10,5.

b. On cherche un nombre x tel que f(x) = -14 c'est-à-dire tel que -3.5x = -14.

Ainsi
$$x = -14 : (-3,5) = 4$$
.

L'antécédent de -14 est 4.

c.
$$f(-16) = -3.5 \times (-16) = 56.$$

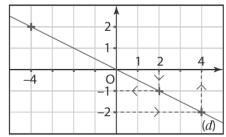
d. On cherche un nombre x tel que f(x) = 21 c'est-à-dire tel que -3,5x = 21.

Ainsi
$$x = 21 : (-3,5) = -6$$
.

Le nombre qui a pour image 21 est – 6.

Ex.54 p.315

1. La représentation graphique de la fonction f est une droite qui passe par l'origine du repère donc f est une fonction linéaire.



- a. L'image de 2 est -1.
- **b.** L'antécédent de -2 est 4.
- **3.** f(x) = -0.5x.

Ex.56 p.315

$$f(1) = 3$$
 donc, pour f , $a = \frac{3}{1} = 3$.
Donc $f(x) = 3x$.

$$g(3) = 1 \text{ donc, pour } g, a = \frac{1}{3}.$$

Donc
$$g(x) = \frac{1}{3}x$$
.

$$h(-4) = 2$$
 donc, pour h , $a = \frac{2}{-4} = -\frac{1}{2}$.

Donc
$$h(x) = -\frac{1}{2}x$$
.

Ex.30 p.313

$$\bullet P_1(x) = 7x + 2.$$

On ne peut pas associer une fonction linéaire au programme P_1 .

•
$$P_2(x) = 7x : 2 = \frac{7x}{2} = 3.5x.$$

On peut associer la fonction linéaire de coefficient 3,5 au programme P₂.

$$\bullet P_{2}(x) = x + 4.$$

On ne peut pas associer une fonction linéaire au programme P₃.

$$\bullet P_4(x) = x : 2 = \frac{1}{2}x.$$

On peut associer la fonction linéaire de coefficient $\frac{1}{2}$ au programme P_{A} .

Ex.34 p.313

a.
$$a \times 4 = 120$$
 donc $a = 120 : 4 = 30$

$$donc f(x) = 30x.$$

b.
$$a \times (-10) = 8 \text{ donc } a = 8 : (-10) = -0.8$$

$$\mathsf{donc}\,f(x) = -0.8x.$$

Ex.55 p.315

a.
$$f(-4) = -3$$
 donc $a = \frac{-3}{-4} = 0.75$. $f(2) = 0.75 \times 2 = 1.5$.

$$f(2) = 0.75 \times 2 = 1.5.$$

Le résultat est cohérent avec la lecture graphique.

b.
$$f(-3) = 2$$
 donc $a = \frac{2}{-3} = -\frac{2}{3}$.

$$f(2) = -\frac{2}{3} \times 2 = -\frac{4}{3}.$$

Le résultat est cohérent avec la lecture graphique.

Ex.32 p.293
$$1 + \frac{5}{100} = 1 + 0.05 = 1.05$$

Augmenter un prix de 5 % revient à le multiplier par 1,05. Une première méthode:

La lampe coûte 126 €.

Le miroir coûte 51,45 €.

Léonie doit payer 177,45 €.

Une autre méthode :

Les deux articles coûtent 169 €.

Léonie doit payer 177,45 €.

Ex.37 p.293

a. 315 - 276 = 39

Entre 2007 et 2013, la masse de déchets annuelle produite par un Français a baissé de 39 kg.

$$\frac{39}{315} \approx 0.12 \text{ or } 0.12 = \frac{12}{100}.$$

Le pourcentage de baisse est d'environ 12 %.

b.
$$1 - \frac{7}{100} = 1 - 0.07 = 0.93$$

Diminuer une quantité de 7 %, revient à la multiplier par 0,93.

$$276 \times \frac{93}{100} = 256,68 \text{ kg}.$$

En 2020, pour respecter les objectifs, la masse de déchets produite en moyenne par Français, ne devra pas dépasser 256,68 kg.

Ex.42 p.294

$$1 - \frac{30}{100} = 1 - 0.3 = 0.70$$

Diminuer une valeur de 30 % revient à la multiplier par 0,70.

On cherche le nombre x tel que :

$$x \times 0.7 = 84$$
 ainsi $x = 84 \div 0.7 = 120$

Avant les soldes, la montre coûtait 120 €.

Ex.70 p.367

a. $2 \times 365 = 730$

730 heures par an

 $730 \times 75 = 54750$

 $730 \times 10 = 7300$

L'ampoule halogène consomme 54 750 Wh et l'ampoule LED consomme 7 300 Wh.

b. 54750 Wh = 54,750 kWh

7300 Wh = 7,3 kWh

 $54,750 \times 0,18 = 9,855$

 $7,3 \times 0,18 = 1,314$

9,855 - 1,314 = 8,541

Une valeur approchée au centime près de l'économie annuelle réalisée est 8.54 €.

 $\mathbf{c.} 30000 : 2000 = 15$

On aura acheté 15 ampoules halogènes lorsque l'on achètera une nouvelle ampoule à LED.

 $15 \times 2,25 = 33,75$

33,75 - 16,50 = 17,25

A l'achat, l'économie réalisée est 17,25 €.

LED:

 $30\,000\,h \times 10\,W = 300\,000\,Wh = 300\,kWh$

 $300 \times 0.18 = 54$

En 30 000 heures, elle a consommé 300 kWh qui coûtent 54 €.

Ampoules halogènes:

 $30\,000\,h \times 75\,W = 2\,250\,000\,Wh = 2\,250\,kWh$

 $2250 \times 0.18 = 405$

En 30 000 heures, elles consomment 2250 kWh qui coûtent 405 €.

Ex.74 p.367

1. a. 1 tour en 30 min correspond à 2 tours en 1h. La vitesse de cette roue peut s'écrire 2 tours/heure.

b. En un tour, la roue balaie par deux fois l'angle plein, soit deux fois 360°.

La vitesse de cette roue peut s'écrire 720°/heure.

c. 720 : 60 = 12

La vitesse de cette roue s'écrit encore 12 degrés/min.

2. $\pi \times 160 \times 2 = 320\pi$

En une heure, une nacelle parcourt 320π m. Une valeur approchée de cette vitesse est 1005 m/h, soit 1,005 km/h

1,005 km/h =
$$\frac{1,005 \text{ km}}{1 \text{ h}} = \frac{1005 \text{ m}}{3600 \text{ s}} \approx \frac{0,279 \text{ m}}{1 \text{ s}} = 0,279 \text{ m/s}$$

Une valeur approchée au millième de cette vitesse est 0.279 m/s.

3. a. $28 \times 40 = 1120$

1 120 personnes peuvent prendre place en même temps sur cette roue.

b. $2 \times 1120 = 2240$,

En une heure, 2240 personnes peuvent prendre place dans la roue. Le débit de cette roue est 2240 personnes/ heure.

Ex.8 p.377

a.
$$k = \frac{66}{44} = \frac{3}{2}$$

L'aire est multipliée par $\frac{9}{4}$ et, comme la puissance est proportionnelle à l'aire, elle est aussi multipliée par $\frac{9}{4}$.

b. $E = 4 \times 10^6 \text{ W} \times 24 \text{ h} \times 365 = 35040 \times 10^6 \text{ Wh}$ L'énergie fournie en 1 an est 35040×10^6 Wh.

Equation

Ex.43 p.184

a)
$$5x+7 = 2x - 2$$

 $5x - 2x + 7 = 2x - 2 - 2x$
 $3x + 7 = -2$
 $3x + 7 - 7 = -2 - 7$
 $3x = -9$
 $x = -9/3 = -3$

Ex.44 p.184

a)
$$2x - 5 = 5x + 1$$

 $2x - 5x - 5 = 5x - 5x + 1$
 $-3x - 5 = 1$
 $-3x - 5 + 5 = 1 + 5$
 $-3x = 6$
 $x = 6/(-3) = -2$

Ex.45 p.184

a)
$$5x - 6 = -x + 3$$

 $5x + x - 6 = -x + x + 3$
 $6x - 6 = 3$
 $6x - 6 + 6 = 3 + 6$
 $6x = 9$
 $x = 9/6 = 1.5$

Ex.2 p.181

a)
$$-4 + 2 = -2$$

 $(-2)^2 = 4$
 $4 - 25 = -21$

Ex.9 p.377

a. $\pi \times 30^2 = 900\pi$

L'aire S de la vantelle est 900 π cm² soit 0,09 π m².

b. $q = S \times v = 0.09 \,\pi \times 2.8 = 0.252 \,\pi \approx 0.7916$

Le débit moyen est $0,252 \,\mathrm{m}\,\mathrm{m}^3/\mathrm{s}$.

Une valeur approchée de ce débit au millième près est $0,792 \text{ m}^3/\text{s}.$

c. 756 : 0,252 $\pi \approx 955$

Il faut patienter environ 955 s.

955 : 60 ≈15,9 or 15,9 >15 donc il faudra patienter plus de 15 min.

b)
$$3x + 2 = x - 10$$

 $3x - x + 2 = x - x - 10$
 $2x + 2 = -10$
 $2x + 2 - 2 = -10 - 2$
 $2x = -12$
 $x = -12/2 = -6$

b)
$$3-7x = 3x + 2$$

 $3-7x-3x = 3x - 3x + 2$
 $3-10x = 2$
 $3-3-10x = 2-3$
 $-10x = -1$
 $x = -1/(-10) = 0.1$

b)
$$2x - \frac{1}{3} = 1$$

 $2x - \frac{1}{3} + \frac{1}{3} = 1 + \frac{1}{3}$
 $2x = \frac{4}{3}$
 $x = \frac{4}{3} : 2 = \frac{4}{3} \times \frac{1}{2} = \frac{2}{3}$

b) Soit *x* le nombre choisi, le résultat du programme est :

$$(x+2)^2 - 25 = (x+2)^2 - 5^2 = (x+2-5)(x+2+5) = (x-3)(x+7)$$

Le programme donne 0 signifie $(x-3)(x+7) = 0$

Un produit de facteurs est égal à 0 lorsque l'un des deux facteurs est égal à 0 donc :

Soit
$$x - 3 = 0$$
, soit $x + 7 = 0$
Soit $x = 3$, soit $x = -7$

Ex.89 p.187

- **1** On note x la longueur, en cm, du côté du carré ABCD.
- **2** L'aire du carré ABCD est x^2 .

L'aire du triangle rectangle AED est $5 \times x$: 2 c'est-à-dire 2,5x.

Le carré ABCD et le triangle rectangle AED ont la même aire, donc : $x^2 = 2.5x$.

3 On résout cette équation :

$$x^{2} = 2.5x$$

$$x^{2} - 2.5x = 2.5x - 2.5x$$

$$x^{2} - 2.5x = 0.$$

Il s'agit d'une équation du second degré. On factorise le membre de gauche.

$$x^{2} - 2.5x = x \times x - 2.5 \times x = x \times (x - 2.5)$$

Résoudre l'équation $x^2 = 2.5x$ revient à résoudre l'équation x(x - 2.5) = 0.

Un produit de facteurs est nul dans le seul cas où l'un de ses facteurs est nul, c'est-à-dire :

$$x = 0$$
 ou $x - 2,5 = 0$
ou $x = 2,5$

0 et 2,5 sont les solutions de l'équation.

4 Si x = 0, ni le carré ABCD ni le triangle AED n'existent. On ne retient pas cette solution.

Si x = 2,5, le carré ABCD et le triangle rectangle AED ont la même aire.

Fonction affine

Ex.22 p.325

a. Pour le programme $1: f_1(x) = 7x - 2$.

Pour le programme 2 : $f_2(x) = \frac{1}{2}x + 7$.

Pour le programme $3:f_3(x) = x + 7$.

Pour le programme $4:f_4(x)=x_2+2$.

b. Les programmes 1, 2 et 3 correspondent à une fonction affine.

Ex.28 p.325

a. f(x) = 0.05x + 5. f est une fonction affine avec a = 0.05 et b = 5.

b.
$$f(400) = 0.05 \times 400 + 5 = 20 + 5 = 25$$

Le montant d'une commande de 400 Go est 25 €.

c. L'antécédent de 15 par la fonction f est le nombre x tel que f(x) = 15, c'est-à-dire 0.05x + 5 = 15

$$0.05x = 15 - 5$$

$$0.05x = 10$$

Ainsi
$$x = \frac{10}{0.05} = 200$$

L'antécédent de 15 par la fonction f est 200.

15 € est le montant d'une commande de 200 Go.

Exercices photocopiés:

Exercice 1.3

f est une fonction affine telle que f(4) = 1 et f(7) = 2Déterminer une expression algébrique de la fonction f.

1.
$$a = \frac{f(7) - f(4)}{7 - 4} = \frac{2 - 1}{3} = \frac{1}{3}$$

2.
$$f(4) = \frac{1}{3} \times 4 + b = 1$$

1.
$$a = \frac{f(7) - f(4)}{7 - 4} = \frac{2 - 1}{3} = \frac{1}{3}$$

2. $f(4) = \frac{1}{3} \times 4 + b = 1$
 $\frac{4}{3} + b = 1$ donc $b = 1 - \frac{4}{3} = -\frac{1}{3}$
3. $f(x) = \frac{1}{3}x - \frac{1}{3}$

3.
$$f(x) = \frac{1}{3}x - \frac{1}{3}$$

Exercice 1.4

g est une fonction affine telle que g(4) = -1 et g(5) = -4Déterminer une expression algébrique de la fonction g.

1.
$$a = \frac{g(4) - g(5)}{4 - 5} = \frac{-1 - (-4)}{-1} = \frac{-1 + 4}{-1} = -3$$

2. $g(4) = -3 \times 4 + b = -1$

2.
$$g(4) = -3 \times 4 + b = -1$$

$$-12 + b = -1$$
 donc $b = -1 + 12 = 11$

3.
$$g(x) = -3x + 11$$

Exercice 1.5

h est une fonction affine telle que h(2) = 0 et h(8) = -3Déterminer une expression algébrique de la fonction

1.
$$a = \frac{h(8) - h(2)}{8 - 2} = \frac{-3 - 0}{6} = \frac{-3}{6} = -0.5$$

2.
$$h(2) = -0.5 \times 2 + b = 0$$

$$-1 + b = 0$$
 donc $b = 0 + 1 = 1$

3.
$$h(x) = -0.5x + 1$$

Exercice 1.7

q est une fonction affine telle que q(5) = -6 et q(6) = -6Déterminer une expression algébrique de la fonction g.

1.
$$a = \frac{g(6) - g(5)}{6 - 5} = \frac{-6 - (-6)}{1} = 0$$

2.
$$g(5) = 0 \times 5 + b = -6$$

b = -6

3.
$$g(x) = -6$$

q est une fonction « constante »

Exercice 1.6

f est une fonction affine telle que f(-2) = -1 et f(6) = 3Déterminer une expression algébrique de la fonction

1.
$$a = \frac{f(-2) - f(6)}{-2 - 6} = \frac{-1 - 3}{-8} = \frac{4}{8} = 0,5$$

2. $f(6) = 0,5 \times 6 + b = 3$

2.
$$f(6) = 0.5 \times 6 + b = 3$$

$$3 + b = 3$$
 donc $b = 3 - 3 = 0$

3.
$$f(x) = 0.5x$$
 f est une fonction linéaire

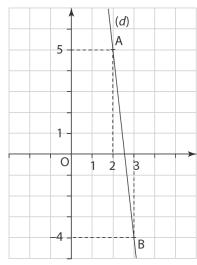
Ex.42 p.327

a. Le coefficient directeur a = -2, l'ordonnée à l'origine

b. Le coefficient directeur a=1, l'ordonnée à l'origine

c. Le coefficient directeur a = 3, l'ordonnée à l'origine b = -2.

Ex.47 p.327



b. Pour aller de A vers B, x augmente de 1 et y diminue de 9 donc le coefficient directeur a = -9.

c.
$$f(x) = -9x + b$$
.

Pour déterminer b, on utilise par exemple le point A (2; 5).

$$f(2) = -9 \times 2 + b = 5$$

On a donc -18 + b = 5

$$b = 5 + 18 = 23$$

Donc f(x) = -9x + 23.

Inéquations

Ex.67 p.185

a.
$$x - 3 > 2$$

On regroupe les termes «en x» dans un membre et les termes « sans x » dans l'autre membre.

$$x - 3 + 3 > 2 + 3$$

Les nombres strictement supérieurs à 5 sont les solutions de l'inéquation.

b.
$$y + 4 \le 1$$

$$y + 4 - 4 \le 1 - 4$$

$$v \leq -3$$

Les nombres inférieurs ou égaux à -3 sont les solutions de l'inéquation.

c.
$$2 - x < 5$$

$$2 - x - 2 < 5 - 2$$

$$-x < 3$$

On multiplie chaque membre par – 1, qui est un nombre négatif, donc on change le sens de l'inégalité.

$$-x \times (-1) > 3 \times (-1)$$

$$x > -3$$

Les nombres strictement supérieurs à -3 sont les solutions de l'inéquation.

Ex.68 p.185

a.
$$4t$$
 ≥ -20

On divise chaque membre par 4, qui est un nombre strictement positif, donc on conserve le sens de l'inégalité.

$$\frac{4t}{4} \geqslant \frac{-20}{4}$$

$$t \geqslant -5$$

Les nombres supérieurs ou égaux à – 5 sont les solutions de l'inéquation.

b.
$$-5x > 2$$

On divise chaque membre par – 5, qui est un nombre strictement négatif, donc on change le sens de l'inégalité.

$$\frac{-5x}{-5} < \frac{2}{-5}$$

$$x < \frac{-2}{5} \text{ soit } x < -0.4$$

Les nombres strictement inférieurs à -0.4 sont les solutions de l'inéquation.

Ex.69 p.185

a.
$$5x + 3 > 8$$

 $5x > 8 - 3$
 $5x > 5$
 $x > 1$

Les nombres strictement supérieurs à 1 sont les solutions de l'inéquation.

b.
$$2a-5 \le -4$$

 $2a \le -4+5$
 $2a \le 1$
 $a \le \frac{1}{2}$ soit $a \le 0.5$

Les nombres inférieurs ou égaux à 0,5 sont les solutions de l'inéquation.

Ex.71 p.185

a.
$$5x + 3 > 2x - 9$$

 $5x + 3 - 2x > -9$
 $3x + 3 > -9$
 $3x > -9 - 3$
 $3x > -12$
 $x > -4$

Les nombres strictement supérieurs à -4 sont les solutions de l'inéquation.

b.
$$4x + 1 \ge 6x - 2$$

 $1 \ge 6x - 2 - 4x$
 $1 \ge 2x - 2$
 $1 + 2 \ge 2x$
 $3 \ge 2x$
 $\frac{3}{2} \ge \frac{2x}{2}$
 $1,5 \ge x$ c'est-à-dire $x \le 1,5$

Les nombres inférieurs ou égaux à 1,5 sont les solutions de l'inéquation.

c.
$$\frac{x}{3} \le 2$$

On multiplie chaque membre par 3, qui est un nombre strictement positif, donc on conserve le sens de l'inégalité.

$$\frac{x}{3} \times 3 \le 2 \times 3$$
$$x \le 6$$

Les nombres inférieurs ou égaux à 6 sont les solutions de l'inéquation.

c.
$$1-2x \ge -3$$

 $-2x \ge -3-1$
 $-2x \ge -4$

On divise chaque membre par –2, qui est un nombre strictement négatif, donc on change le sens de l'inégalité.

$$\frac{-2x}{-2} \leqslant \frac{-4}{-2}$$

$$x \leqslant 2$$

Les nombres inférieurs ou égaux à 2 sont les solutions de l'inéquation.

Ex.72 p.185

a.
$$2x + 3 \le 3x + 1$$

 $3 \le 3x + 1 - 2x$
 $3 \le x + 1$
 $3 - 1 \le x$
 $2 \le x$ c'est-à-dire $x \ge 2$

Les nombres supérieurs ou égaux à 2 sont les solutions de l'inéquation.

b.
$$5x + 4 < 2 - 3x$$

 $5x + 4 + 3x < 2$
 $8x + 4 < 2$
 $8x < 2 - 4$
 $8x < -2$
 $\frac{8x}{8} < \frac{-2}{8}$
 $x < -0.25$

Les nombres strictement inférieurs à -0.25 sont les solutions de l'inéquation.

Ex.74 p.186

1. a. Avec le tarif A, le montant de la dépense, en \in , est 5,50 × n soit 5,5n.

b. Avec le tarif B, le montant de la dépense, en \in , est $40 + 4 \times n$ soit 40 + 4n.

2. a.
$$4n + 40 \le 5.5n$$

 $40 \le 5.5n - 4n$
 $40 \le 1.5n$
 $\frac{40}{1.5} \le \frac{1.5n}{1.5}$
 $\frac{40}{1.5} \le n$
 $\frac{40 \times 2}{1.5} = \frac{80}{3} \text{ donc } \frac{80}{3} \le n \text{ soit } n \ge \frac{80}{3}$

Les nombres supérieurs ou égaux à $\frac{80}{3}$ sont les solutions de l'inéquation.

b.
$$\frac{80}{3} \approx 26,7$$

Les nombres entiers qui sont solutions de cette inéquation, c'est-à-dire les nombres 27, 28, 29, etc. sont les nombres de séances pour lesquelles Maïa a intérêt à choisir le tarif B. En effet à partir de 27 séances par an, Maïa paiera moins cher avec le tarif B qu'avec le tarif A.